Pourcentage

# LES LEVURES EMERGENTES DU GENRE CANDIDA: IDENTIFICATION MOLECULAIRE ET ETUDE DE LA SENSIBILITE AUX ANTIFONGIQUES

Krichene L., Aidi N., Maaloul M., Ktari N., Neji S., Sellami H., Makni F., Trabelsi H., Ayadi A. Laboratoire de Parasitologie- Mycologie- CHU Habib Bourguiba Sfax-Tunisie

No souche

#### Introduction

Les levures rares du genre Candida:

- actuellement: de plus en plus émergentes
- identification par les tests phénotypiques manque parfois de sensibilité.
- Recours à la biologie moléculaire: établir le diagnostic, la taxonomie et l'étude phylogénétique de ces levures.

#### Objectifs

- ➤Étudier l'apport de la PCR-séquençage dans l'identification des levures rares et émergentes du genre *Candida*.
- ➤Etudier la sensibilité *in vitro* de ces levures aux différents antifongiques

#### Matériel et méthodes

- Etude rétrospective:
- >25 souches de levures rares et émergentes du genre Candida
- isolées à partir de prélèvements superficiels et profonds: (18 hémocultures, 1 prélèvement urinaire, 2 cathéters centité.)
- (18 hémocultures, 1 prélèvement urinaire, 2 cathéters centraux, 1 prélèvement vaginal, 1 prélèvements trachéo-distal, 1 LBA et 1 liquide péritonéal)
- Laboratoire parasitologie-mycologie CHU Habib Bourguiba de Sfax
- Période: Janvier 2005 Mars 2021
- Identification phénotypique: ID32C
- Etude moléculaire: PCR- séquençage des régions ITS de l'ADN ribosomal (amorces ITS1 et ITS4).
- Etude de la sensibilité aux antifongiques: Sensititre YeastOne (16 souches).

#### Résultats

#### Etude moléculaire

- Identification moléculaire par PCR : 100% des cas (% de similarité ≥ 97%)
  - →bandes dont la taille a varié entre 282pb et 753pb



Exemples d'amplification par PCR de la région ITS1-5,8S-ITS2 de 5 de nos souches

- M: marqueur de taille 100pb, 302D/20 (*C.lusitaniae*), 478 HC/07 (*C.kefyr*), 388 HC/19 (*C.guillermondii*), 213 HC/19 (*C.blankii*), 145 PV/09 (*C.lusitaniae*)
- Concordance entre identification phénotypique et moléculaire: 14 cas (56%)
- Identification exacte de l'espèce de levure : 4 cas (16%)
- Rectification des résultats de l'identification mycologique : 7 souches (28%)

# Résultats de l'identification phénotypique et moléculaire des souches de levures étudiées

Identification moléculaire

Identification

|            | phénotypique            | (PCR-séquençage)          | de similarité |
|------------|-------------------------|---------------------------|---------------|
| 512 H C/12 | C.guilliermondii        | Meyerozyma guilliermondii | 100%          |
| 268 H C/14 | C.inconspicua           | Pichia kudriavzevii       | 99,8%         |
| 35 HC/14   | C.pelliculosa           | Wickerhamomyces anomalus  | 99,5%         |
| 213 H C/19 | C.silvicola             | Candida blankii           | 97,8%         |
| 384 H C/19 | Levure non identifiable | C.parapsilosis +          | 100%          |
|            |                         | Hanseniaspora opuntiae    | 98 %          |
| 458 H C/12 | Levure non identifiable | Candida diddensiae        | 100%          |
| 160 H C/19 | Levure non identifiable | C.parapsilosis            | 100%          |
| 21 LBA/05  | C.kefyr                 | Meyerozyma guilliermondii | 100%          |
| 204 H C/07 | Levure non identifiable | C. tropicalis             | 99,4%         |
| 213 HC/07  | C.carsoni               | C.parapsilosis            | 100%          |
| 478 H C/07 | C.kefyr                 | Kluyveromyces marxianus   | 100%          |
| 145 PV/09  | C.kafyr                 | Clavispora lusitaniae     | 98,6%         |
| 593 H C/09 | C.lusitaniae            | Clavispora lusitaniae     | 100%          |
| 355 D/10   | C.lusitaniae            | Clavispora lusitaniae     | 99,7%         |
| 11 HC/14   | C.guilliermondii        | Meyerozyma guilliermondii | 97,8%         |
| 617 HC/15  | C.lus itaniae           | Clavispora lusitaniae     | 97,4%         |
| 288 H C/15 | C.lusitaniae            | Clavispora lusitaniae     | 99,6%         |
| 227D/18    | C.lusitaniae            | Clavispora lus itaniae    | 99,4%         |
| 589U/18    | C.colliculosa           | C.glabrata                | 99,7%         |
| 388 H C/19 | C.guilliermondii        | Meyerozyma guilliermondii | 100%          |
| 259 H C/19 | C.lusitaniae            | Clavispora lusitaniae     | 100%          |
| 136 H C/19 | C.utilis                | Cyberlindnera jadinii     | 99,8%         |
| 302 D/20   | C.lus itaniae           | Clavispora lusitaniae     | 98,5%         |
| 183 H C/20 | C.lusitaniae            | Clavispora lus itaniae    | 99%           |
| 197 D/21   | C.catenulata            | Candida stellimalicola    | 99%           |

## Etude de la sensibilité aux antifongiques:

- 7 souches de C.lusitaniae: sensibles à l'AB, au VOR et à la CAS, alors que 6 étaient sensibles au FZ
- 2 souches de *C.guilliermondii:* sensibles à l'AB, au VOR et à la CAS, alors qu'une souche était sensible selon la dose au FZ
- La souche de C.utilis et la souche de C.kefyr : sensibles à tous les antifongiques.
- La souche de C.blankii: résistante à l'AB, au FZ, au VOR et à la CAS.

### Discussion et conclusions

- Cette étude souligne l'importance d'utiliser la technique d'identification moléculaire lorsque les techniques de routine ne permettent pas une identification réussie de l'agent pathogène
- Notre étude: la PCR- séquençage a permis d'identifier des levures jamais identifiés auparavant dans notre laboratoire ou même dans notre pays (*C.diddensiae*, *C.blankii*)
- Levures rares et émergentes: profil de sensibilité variable aux antifongiques
- Il est indispensable de poursuivre la surveillance épidémiologique des infections invasives à levures rares et émergentes
- → détecter rapidement toute modification de l'épidémiologie et de la sensibilité aux antifongiques de ces pathogènes responsables d'une lourde morbi-mortalité pour certaines espèces +++